Coarse Median Spaces and Groups

نویسنده

  • BRIAN H. BOWDITCH
چکیده

We introduce the notion of a coarse median on a metric space. This satisfies the axioms of a median algebra up to bounded distance. The existence of such a median on a geodesic space is quasi-isometry invariant, and so applies to finitely generated groups via their Cayley graphs. We show that asymptotic cones of such spaces are topological median algebras. We define a notion of rank for a coarse median and show that this bounds the dimension of a quasi-isometrically embedded euclidean plane in the space. Using the centroid construction of Behrstock and Minsky, we show that the mapping class group has this property, and recover the rank theorem of Behrstock and Minsky and of Hamenstädt. We explore various other properties of such spaces, and develop some of the background material regarding median algebras. 2010 Mathematics Subject Classification : 20F65

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Invariance of Coarse Median Spaces under Relative Hyperbolicity

We show that the property of admitting a coarse median structure is preserved under relative hyperbolicity for finitely generated groups. 2010 Mathematics Subject Classification : 20F65

متن کامل

Large-scale Rigidity Properties of the Mapping Class Groups

We study the coarse geometry of the mapping class group of a compact orientable surface. We show that, apart from a few low-complexity cases, any quasi-isometric embedding of a mapping class group itself agrees up to bounded distance with a left multiplication. In particular, such a map is a quasi-isometry. This is a strengthening of the result of Hamenstädt and of Behstock, Kleiner, Minsky and...

متن کامل

Embedding Median Algebras in Products of Trees

We show that a metric median algebra satisfying certain conditions admits a bilipschitz embedding into a finite product of R-trees. This gives rise to a characterisation of closed connected subalgebras of finite products of complete R-trees up to bilipschitz equivalence. Spaces of this sort arise as asymptotic cones of coarse median spaces. This applies to a large class of finitely generated gr...

متن کامل

Rank and Rigidity Properties of Spaces Associated to a Surface

We describe the large scale geometry of the mapping class group and of the pants graph (or equivalently the Teichmüller space in the Weil-Petersson metric) of a compact orientable surface, from the point of view of coarse median spaces. We derive various results about coarse rank and quasi-isometric rigidity of such spaces. In particular, we show that a quasi-isometric embedding of a mapping cl...

متن کامل

Quasi-actions on trees II: Finite depth Bass-Serre trees

This paper addresses questions of quasi-isometric rigidity and classification for fundamental groups of finite graphs of groups, under the assumption that the BassSerre tree of the graph of groups has finite depth. The main example of a finite depth graph of groups is one whose vertex and edge groups are coarse Poincare duality groups. The main theorem says that, under certain hypotheses, if G ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011